- Tebbe, K.-F. (1992). *KRISTALL-ST. Ein Programmsystem zur Erstellung von Eingabefiles, Tabellen und Pulverdiagrammen. Univ. Köln,* Deutschland. Unveröffentlicht.
- Tebbe, K.-F. & Plewa, M. (1982). *Z. Anorg. Allg. Chem.* 489, 111- 125.
- Tebbe, K.-F. & Kavoosian, A. (1993). *Z. Naturforsch. Teil B,* 48, 438-442.
- Tebbe, K.-F. & Lindenthal, W. (1993). *Z. Anorg. Allg. Chem.* 619, 1483-1487.
- Tebbe, K.-F. & Nafepour, S. (1994). *Acta Cryst.* C50, 171-173.
- Trueblood, K. N. (1978). *Acta Cryst.* A34, 950-954.
- Watson, W. H., Nagl, A. & Kashyap, R. P. (1991). *Acta Cryst.* C47, 800-803.
- Weber, G. (1982). *Acta Cryst.* B38, 2712-2715.
- Yvon, K., Jeitschko, W. & Parthé, E. (1977). *J. Appl. Cryst.* **10**, 73-74.

Acta Cryst. (1995). C51, 565-567

Zirconocene Dichloride

JOYCE Y. COREY, XIAO-HONG ZHU, LEE BRAMMER AND NIGAM P. RATH

Department of Chemistry, University of Missouri - St Louis, St Louis, MO 63121, USA

(Received 4 February 1994; *accepted* 11 *October* 1994)

Abstract

The α form of dichlorobis(n^5 -cyclopentadienyl)zirconium, $[ZrCl_2(C_5H_5)_2]$, crystallizes in space group $P\overline{1}$ and is isomorphous with α -Cp₂TiCl₂ and α -Cp₂HfCl₂. The two C1 ligands and the centroids of the Cp rings adopt an irregular tetrahedral arrangement about the Zr center. The angle between the CI-Zr-C1 plane and the Cp_{centroid}- $Zr-\dot{C}p_{centroid}$ plane is 89.4 \degree for molecule (1) and 89.7° for molecule (2) of the asymmetric unit. The average bond distances are $C-C = 1.384(5)$ and $Zr-C1 = 2.447(3)~\text{\AA}$ in molecule (1), and $C-C =$ 1.359(7) and $Zr-Cl = 2.447(1)$ Å in molecule (2).

Comment

A commercial sample of the title compound, (I), was recrystallized from chloroform over a two month period at 278 K to provide the α crystalline form. A β form of zirconocene dichloride (space group $P2_1/a$, $Z = 8$) has been obtained by recrystallization from tetrahydrofuran and the structural parameters have been described briefly (Soloveichik, Arkhireeva, Bel'skii & Bulychev, 1988).

© 1995 International Union of Crystallography Printed in Great Britain - all rights reserved

The structure determination of the α form, which was first reported in 1974 (Prout, Cameron, Forder, Critchley, Denton & Rees, 1974), indicated that the atoms of the cyclopentadienyl rings exhibited large displacement parameters in the ring planes, consistent with either static or dynamic disorder. This disorder was modeled using rigid bodies with isotropic atomic displacement parameters to describe two orientations of partial occupancy for the rings associated with one molecule and large anisotropic atomic displacement parameters to describe a single-ring orientation for the other independent molecule. The model converged at $R = 0.095$. A later attempt to refine the structure of α -Cp₂ZrCl₂ was abandoned when the same disorder was observed (Clearfield, Warner, Saldarriaga-Molina, Ropal & Bernal, 1975). In the present redetermination, Mo $K\alpha$ radiation rather than Cu $K\alpha$ radiation has been used, thus reducing the effects of absorption considerably. Furthermore, refinement of each of the cyclopentadienyl rings using unconstrained single orientations with anisotropic atomic displacement parameters has led to convergence at $R = 0.032$ and $S =$ 1.08, and also permitted the direct location and refinement of the cyclopentadienyl H atoms. Large anisotropic displacement parameters of the ring C atoms are again indicative of either static or dynamic disorder. The short mean C--C distances, $1.384(5)$ Å in molecule (1) and 1.359 (7) Å in molecule (2) (cf. typical C-C distance of 1.397 Å; Orpen, Brammer, Allen, Kennard, Watson & Taylor, 1989), are also consistent with this assertion. The structures of α -Cp₂TiCl₂ (recrystallized from C6H6) (Clearfield, Warner, Saldarriago-Molina, Ropal & Bernal, 1975) and α -Cp₂HfCl₂ (recrystallized from CH2C12) (Soloveichik, Arkhireeva, Bel'skii & Bulychev, 1988) are isomorphous with the Cp_2ZrCl_2 structure reported here. All three metallocene dihalides exhibit a similar disorder problem in the Cp rings. A comparison of selected parameters for the three metallocene dihalides is given in Table 3.

Fig. 1. Displacement ellipsoid drawing *(SHELXTL-PIus;* Sheldrick, 1991) of the title compound. Ellipsoids are scaled to enclose 50% probability and H atoms are omitted for clarity.

Acta Crystallographica Section C ISSN 0108-2701 ©1995

The metallocene dihalides and related derivatives of titanium and zirconium are utilized as homogeneous Ziegler-Natta catalyst precursors for the polymerization of olefins (Collman, Hegedus, Norton & Finke, 1987).

> Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14

reflections $\theta = 10 - 13^{\circ}$ μ = 1.435 mm⁻¹ $T = 298 K$ Rectangular $0.6 \times 0.3 \times 0.2$ mm

Colorless

 30°

Experimental

Crystal data

Data collection

Refinement

Table 1. *Fractional atomic coordinates and equivalent isotropic displacement parameters* (A^2)

$$
U_{\text{eq}} = (1/3)\Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \mathbf{a}_j.
$$

Table 2. Selected geometric parameters (Å, °)

t Cpl, Cp2, Cp3 and Cp4 are the centroids of the cyclopentadienyl rings.

 $\overline{1}$ E.s.d.'s for averaged dimensions were calculated according to $\sigma = [\sum (d_i - d)^2/n(n-1)]^{1/2}.$

Table 3. *Comparison of structural parameters* (\hat{A}, \circ) *in* $Cp₂MCI₂$ (*M* = Ti, Zr, Hf)

Notes: (a) Clearfield, Warner, Saldarriago-Molina, Ropal & Bemal (1975); (b) this work; (c) Soloveichik, Arkhireeva, Bel'skii & Bulychev (1988); (d) average e.s.d.'s calculated as in footnote \ddagger to Table 2; (e) calculated for all C--C distances from published data.

As some disorder was indicated from the larger U_{eq} values for the C atoms, attempts were made to resolve the disorder. However, due to the closeness of the C atoms in the disorder model $(<0.3~\text{\AA})$, a split-atom model could not be refined.

Refinement was also attempted using F_o^2 (SHELXL93; Sheldrick, 1993), but no improvement was observed. Two types of empirical absorption correction were tried: (i) ψ scan *(SHELXL93 XEMP),* and (ii) using equivalent reflections, the former resulting in a better quality structure.

Acknowledgement is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, to the National Science Foundation (CHE-9213688), to the Research Board of the University of Missouri and to a Research Incentive Award from the University of Missouri – St Louis, for support of this work.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CRl136). Copies may be obtained through The Managing Editor, Intemational Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Clearfield, A., Warner, D. K., Saldarriaga-Molina, C. H., Ropal, R. & Bernal, I. (1975). *Can. J. Chem.* 53, 1622-1629.
- Collman, J. P., Hegedus, L. S., Norton, J. R. & Finke, R. G. (1987). *Principles and Applications of Organotransition Metal Chemistry,* pp. 577-617. California: University of Science Books.
- Larson, A. C. (1970). *Crystallographic Computing,* edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). *J. Chem. Soc. Dalton Trans.* pp. S1-\$83.
- Prout, K., Cameron, T. S., Forder, R. A., Critchley, S. R., Denton, B. & Rees, G. V. (1974). *Acta Cryst.* B30, 2290-2304.
- Sheldrick, G. M. (1991). *SHELXTL-Plus. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data.* Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). *SHELXL93. Program for the Refinement of Crystal Structures.* Univ. of G6ttingen, Germany.
- Soloveichik, G. L., Arkhireeva, T. M., Bel'skii, V. K. & Bulychev, B. M. (1988). *Metalloorg. Khim.* 1, 226-230.

Acta Cryst. (1995). C51, 567-569

An Oxovanadium(IV) Complex Chelated by Dipyridyl Sulfide

MITSURU KONDO, SATOSHI KAWATA AND SUSUMU KITAGAWA

Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-03, Japan

HIDENORI KISO AND MEGUMU MUNAKATA

Department of Chemistry, Kinki University, Kowakae, Higashi-Osaka 577, Japan

(Received 14 *February* 1994; *accepted 11 July* 1994)

Abstract

The complex $(di-2-pyridyl$ sulfide- N, N')dichlorooxovanadium(IV), $[VOCl₂(C₁₀H₈N₂S)]$, was prepared by the reaction of VC1_3 and sodium 2-mercaptopyridine Noxide in ethanol solution under an atmosphere of argon. The N atoms of the dipyridyl sulfide ligand and the two chloride ligands coordinate to the oxovanadium(IV) ion, to give a complex with square-pyramidal geometry. The

dipyridyl sulfide ligand forms a folded six-membered chelate ring with a larger N —V—N bite angle than that formed by 2,2'-bipyridyl.

Comment

Pyridines have been utilized widely in the synthesis of transition metal complexes because of their σ/π -bonding capability. An additional and significant effect on the geometry of the complex formed is expected when multidentate polypyridines are used. 2,2'-Bipyridine (bpy) is one such ligand (Holloway & Melnik, 1985), and gives rise to a five-membered chelate ring. Ligands of the type py-X---py (bpyX; $X = O$ or S) give sixmembered chelate rings, modifying the metal-nitrogen bonding. Many vanadium complexes of bpy have been synthesized and characterized by X-ray crystallography (Boas & Pessoa, 1987), whereas vanadium complexes of bpyX are few. Here we report the structure of the title complex, (I).

The structure of the the title complex, (I), is shown in Fig. 1. The mononuclear vanadium(IV) center is ligated by an O, two Cl and two N atoms. The V --O bond distance $[1.573(2)$ Å is typical for vanadium complexes having a terminal oxo group (Nugent & Mayer, 1988). The N- $-V-N$, O- V --Cl, O- $V-N$ and Cl-V-N bond angles indicate a typical square-pyramidal $VOC1₂N₂$ core with the oxo ligand occupying the apical site. The V atom lies 0.52 Å above the plane formed by the two CI and two N atoms. The O atom of the sodium 2-mercaptopyridine N -oxide used in the synthesis of (I) is a likely source of the terminal oxo ligand, while the presence of vanadium may promote the ligand-coupling reaction which results in the formation of the bpyS ligand, an unexpected product of the reaction. The bpyS ligand is not planar, and the six-membered chelate ring has a folded boat-like conformation. In the chelate ring the N- $-V-N$, V-N-C, $N-C-S$ and $C-S-C$ bond angles, and the V-N, $N-C$ and $C-S$ bond lengths all fall within the range of usual values; hence the six-membered ring is not strained. The $N(1)$ — $V(1)$ — $N(2)$ bond angle is larger than that found for the rigid five-membered chelate ring formed by bpy in the oxovanadium(IV) complex $[VO(bpy)(N-methoxyiminodiacetate)] [77.4 (2)^o]$ (de C. T. Carrondo, Duarte, Silva & da Silva, 1991). The V $-N$ bond lengths in the title complex are longer than those in [VO(bpy)(N-methoxyiminodiacetate)] $[2.088 (4), 2.094 (4) \text{ Å}]$. These results show that the